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In this supplementary material, Section 1 contains an
illustration of the working principle of the proposed
algorithm using the real-life cervical cancer (CESC) data
set. Section 2 contains description of the data sets and
the data pre-processing steps. The experimental setup
and parameter tunning approaches used for the existing
algorithms are outlined in Section 3. Section 4 describes
the cluster evaluation measures used in this work to
evaluate the clustering performance of different algo-
rithms.

1 ILLUSTRATIVE EXAMPLE FOR PROPOSED
METHOD ON CESC DATA SET

The proposed algorithm uses multivariate normality
to the estimate rank and relevance of the individual
modalities. The rank and relevance of the modalities
are reported in Table 1 for different data sets. Table 1
shows that the relevance and rank of the modalities
vary among the data sets, and hence different subsets of
modalities are selected for different data sets. A modality
having zero rank indicates that its first two principal
components are normally distributed, and the modality
contains only the noise component. This automatically
eliminates noisy modalities having zero rank and low
relevance values (like RNA and miRNA modalities of
LGG, and mDNA modality of OV) from integrating
into the joint subspace. For CESC data set, initially all
the modalities have non-zero ranks and all are consid-
ered for joint subspace construction. However, during
integration, a majority of the residual components from
different modalities turn out to be normal with respect
to the existing joint subspace. Hence, they are not inte-
grated into the final subspace, thus performing a second
level of noise removal.

The working principle of the proposed algorithm is
illustrated using the CESC data set as an example. Table
1 shows that for the CESC data set, the rank r of mDNA,
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RNA, miRNA, and Protein are 3, 2, 5, and 4, respectively.
Fig. 1 and Fig. 2 show density plots, quantile-quantile
(Q-Q) plots, and p-values for the first 5 principal com-
ponents of RNA and mDNA modalities, respectively of
CESC data set. These figures show that third, fourth, and
fifth components of the RNA, and fourth and fifth com-
ponents of mDNA are normally distributed, depicting
the random Gaussian noise component of these modali-
ties. On the other hand, the first two components of RNA
in Fig. 1 show deviation from normality, indicating the
presence of clusters. For mDNA, Fig. 2 shows that the
second principal component abruptly follows a normal
distribution, while both first and third components show
deviation from normality. Additionally, the remaining
components from 4 onwards are normally distributed.
So, the rank of mDNA is estimated to be 3. The density
plots in Fig. 1 and 2 also show that the first component
of both RNA and mDNA have a bimodal distribution,
indicating multiple clusters. According to the relevance
values in Table1, four modalities of the CESC data set
can be ordered as RNA followed by Protein, miRNA, and
mDNA. Therefore, the joint subspace construction begins
with RNA. Although mDNA is the modality with lowest
relevance, it has the maximum shared information with
RNA, according to the dependency measure. So, mDNA
is selected next for integration. Fig. 3 shows the density
and Q-Q plots of the residuals of mDNA with respect
to the current joint subspace of RNA. The figure shows
that the residuals of the first and second component of
mDNA are normally distributed with p-values 0.284 and
0.246, respectively, while the third component deviates
from normality (p-value is 0.0348). Therefore, only the
third principal component of mDNA is integrated into
the joint subspace. The modality selected next for inte-
gration is miRNA whose estimated rank is 5. The density
and Q-Q plots for principal components of miRNA
and their residuals with respect to the current joint
subspace are given in Fig. 4 and 6(a), respectively. The
plots of the residuals in 6(a) show that the residual of
only the fourth principal component of miRNA shows
significant divergence from normality and is selected
for integration into the joint subspace. Finally, Protein



2 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. XX, NO. YY, 2018

TABLE 1
Relevance and Rank of Each Modality and Selected Modalities

Different CESC LGG OV BRCA
Modalities Relevance Rank Relevance Rank Relevance Rank Relevance Rank

mDNA 0.1884817 3 0.4320317 10 0.0230986 0 0.2373227 5
RNA 0.2921399 2 0.0289518 0 0.4936741 3 0.2947759 3

miRNA 0.1990886 5 0.0056958 0 0.2474369 5 0.1602746 4
Protein 0.2006048 4 0.2428867 6 0.0579902 2 0.2464338 6
Selected RNA, mDNA, miRNA, Protein mDNA, Protein RNA, miRNA, Protein RNA, mDNA, miRNA, Protein
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Fig. 1. Density and Q-Q plots for first five components of gene expression data of CESC
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Fig. 2. Density and Q-Q plots for first five components of DNA methylation data of CESC
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Fig. 3. Density and Q-Q plots for the residual components the DNA methylation data of CESC
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(b)

Fig. 4. Density and Q-Q plots for first 8 components of miRNA modality of CESC data set

is selected for integration whose estimated rank is 4.
The density and Q-Q plots for principal components
of Protein and their residuals are given in Fig. 5 and
6(b), respectively. Fig. 6(b) shows that out of the top
four principal components of Protein, the residuals of
only the first and second components show deviation
from normality. Thus only these two components of the
Protein modality are integrated into the joint subspace
and the rest are eliminated as noisy ones, thus forming
a six dimensional joint subspace for CESC.

2 DESCRIPTION OF DATASETS
The descriptions of four real-life multimodal cancer
data sets from The Cancer Genome Atlas (TCGA)
(https://cancergenome.nih.gov/), which are used in this
study are as follows:

1) Cervical carcinoma (CESC): This cancer accounts
for 528,000 new cases and 266,000 deaths world-

wide each year, more than any other gynecological
tumour [1]. By comprehensive integrated analysis,
TCGA research network has identified three sub-
types in CESC [2]. The CESC data set consists of
124 samples: 37 samples of keratin-low squamous
subgroup, 58 samples of keratin-high squamous
subgroup, and 29 samples of adenocarcinoma-rich
subgroup.

2) Lower grade glioma (LGG): Diffuse low-grade and
intermediate-grade gliomas which together make
up the lower-grade gliomas have highly variable
clinical behavior that is not adequately predicted
on the basis of histological class. Integrative anal-
ysis of data from RNA, DNA-copy-number, and
DNA-methylation platforms has uncovered three
prognostically significant subtypes of lower-grade
glioma [3]. The LGG data set consists of 267 sam-
ples. The first subtype has 134 samples which
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Fig. 5. Density and Q-Q plots for first 8 components of Protein modality of CESC data set

exhibit IDH mutation and no 1p/19q codeletion.
The second subtype exhibits both IDH mutation
and 1p/19q codeletion and has 84 samples. The
third one is called the wild-type IDH subtype and
has 49 samples.

3) Ovarian carcinoma (OV): Ovarian cancer is the
eighth most commonly occurring cancer in women
and there were nearly 300,000 new cases in 2018
[4]. Ovarian cancer encompasses a heterogeneous
group of malignancies that vary in etiology, molec-
ular biology, and numerous other characteristics.
TCGA researchers have identified four robust ex-
pression subtypes of high-grade serous ovarian
cancer [5]. The OV data set consists of 334 sam-
ples. The four subtypes are termed as immunore-
active, differentiated, proliferative, and mesenchy-
mal, consisting of 74, 91, 90, and 79 samples, re-
spectively.

4) Breast invasive carcinoma (BRCA): Breast cancer
is one of the most common cancers with greater
than 1,300,000 cases and 450,000 deaths each year
worldwide [6]. During the last 15 years, four intrin-
sic molecular subtypes of breast cancer (Luminal
A, Luminal B, HER2-enriched, and Basal-like) have
been identified and intensively studied [7], [8], [6].
The BRCA data set consists of 398 samples com-
prising of 171, 98, 49, and 80 samples of LuminalA,
LuminalB, HER2-enriched, and Basal-like subtype,
respectively.

These subtypes have been shown to be clinically
relevant and provide roadmap for patient stratification
and trials of targeted therapies. For all the data sets,
four different omic modalities are considered, namely,
DNA methylation (mDNA), gene expression (RNA), mi-
croRNA expression (miRNA), and protein expression
(Protein).
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(a) Residuals of miRNA
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(b) Residuals of Protein

Fig. 6. Density and Q-Q plots for the residual components the miRNA and Protein modalities of CESC data set

Data pre-processing: For the DNA methylation modal-
ity, methylation β-values from Illumina HumanMethy-
lation450 and HumanMethylation450 beadarray plat-
forms are used. The HumanMethylation450 beadarray
gives methylation β-values of approximately 450,000
CpG sites, while HumanMethylation27 beadarray covers
27,000 CpG sites. These two platforms share a common
set of 25,978 CpG locations. For all the data set, methy-
lation data across those common 25,978 CpG locations
are considered. Additionally, CpG locations with missing
gene information were filtered out from the study. The
top 2,000 most variable CpG sites are used for clustering.
For the RNA modality of CESC, LGG, and BRCA data
sets, RNA-sequence data from Illumina HiSeq platform
is used which contains normalized RPKM (reads per
kilobase of exon per million) counts for 20,531 genes.
The data is then log transformed and 2,000 most vari-
able genes based on their expression profile across the
samples are considered. Sequence based microRNA ex-
pression data from Illumina HiSeq platform is used

for CESC, LGG, and BRCA data sets, which contains
RPM (reads per million miRNA mapped) values for
1045 miRNAs. The miRNA sequence data is also log
transformed and only those miRNAs for which the
expression value is present for 95% of the samples are
considered. On the other hand, for the OV data set,
array based gene and miRNA expression data from
AgilentG4502A 07 3 and H-miRNA 8x15Kv2 platforms
are used. The RNA modality of OV data set consists of
log-ratio based expression data for 17,814 genes amongst
which 2,000 most variable genes are considered. The
miRNA expression data is available for 799 microRNAs.
For protein modality of all the data sets, reverse phase
protein array data from the MDA RPPA Core platform
having approximately 220 proteins is used. These four
modalities, measured on different platforms represent a
wide variety of biological information.
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Fig. 7. Optimal rank estimation of LRAcluster for different data sets

3 EXPERIMENTAL SETUP FOR EXISTING AL-
GORITHMS

The performance of the proposed algorithm is com-
pared with nine existing integrative clustering based
approaches, namely, cluster of cluster analysis (COCA)
[9], Bayesian consensus clustering (BCC) [10], Bayesian
correlated clustering (referred to as MDI) [11], and clus-
ternomics [12], LRAcluster [13], joint and individual
variance explained (JIVE) [14], iCluster [15], iCluster2
[16], and principal component analysis (PCA) on con-
catenated data (PCA-con) [17].

The experimental setup used for these algorithms is
briefly outlined as follows:
• COCA [9]: This is a consensus clustering based

approach which first cluster each modality sepa-
rately and the individual clustering solutions are
then combined to get the final cluster assignments.
Subtypes identified from each modality are encoded
into a series of indicator variables for each subtype.
Consensus clustering is performed on the indicator
matrix of 0’s and 1’s using ConsensusClusterPlus R-
package [18] to identify structure and relationship
of the samples. The consensus clustering algorithm
uses re-sampling based technique to find the clus-
ters, so its performance varies on different execu-
tions of the algorithm. The average performance of
the COCA algorithm over 10 executions is reported
in this work. Parameters for consensus cluster are
80% sample re-sampling with 1000 iterations of hi-
erarchical clustering based on a Pearson correlation
distance metric [9].

• LRAcluster [13]: This is a low-rank based approach
which models each modality of a multimodal data
set using a separate probability distribution having
its own set of parameters. In this work, four omic
modalities are considered for each cancer data set.
For RNA and miRNA modalities of CESC, LGG, and
BRCA data sets, sequence based count data are con-
sidered, while for mDNA and Protein modalities, ar-
ray based expression data is considered. Therefore,
as suggested by the authors [13], count based RNA
and miRNA modalities are not log transformed and

are modeled using Poisson distribution, while array
based mDNA and Protein modalities are modeled
using Gaussian distribution. On the other hand, for
the OV data set, for all the four modalities, array
based data is considered which is modeled using
Gaussian distribution. For LRAcluster, the rank of
the lower dimensional subspace is optimized using
the likelihood based “explained variation” criteria
[13], as suggested by the authors. According to this
criteria, the value of explained variance is observed
for different values of rank varying between 0 to 10.
The optimal value of rank is chosen to be the one
having the maximum change in explained variance.
The change in explained variance for different val-
ues of rank is given in Fig. 7 for different data sets.
Based on this criteria, the optimal rank obtained for
the CESC, LGG, OV, and BRCA data sets are 1, 2, 1,
and 2, respectively. After obtaining the optimal low-
rank subspace, k-means clustering is performed in
that subspace to identify the clusters.

• JIVE [14]: The JIVE algorithm extracts two low-
rank representations for each modality, one encodes
the shared joint structure, while the other encodes
modality specific structure. The ranks of the joint
and the individual structures are automatically de-
termined using two different criteria: one based on
permutation test (PERM), and the other based on
Bayesian information criteria (BIC). After obtaining
the joint rank, say j, and the joint and individual
structures for each modality, the integrated joint
structure from all the modalities is obtained by
concatenating the j largest principal components
of the joint structure obtained from each of the
modalities. Then k-means clustering is performed
on the integrated joint structure to get the final
clusters. The joint and individual ranks obtained by
the JIVE algorithm using the permutation and BIC
based rank selection criteria are given in Table 2 for
different data sets.

• iCluster [15] and iCluster2 [16]: These are low-
rank based approach which use Gaussian latent
variable model to extract a (k − 1) dimensional
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TABLE 2
Joint and Individual Ranks Obtained by JIVE Algorithm

Different
Datasets

Algorithm Joint
Rank

Individual Ranks Algorithm Joint
Rank

Individual Ranks

mDNA RNA miRNA Protein mDNA RNA miRNA Protein

CESC
JIVE

(PERM)

5 15 21 13 10
JIVE
(BIC)

1 1 0 1 1
LGG 2 12 23 18 12 2 1 2 2 2
OV 8 34 50 33 23 0 2 1 2 1

BRCA 3 30 36 15 15 1 3 4 1 0

TABLE 3
Lasso penalty parameter for iCluster and iCluster2 Algorithms

Different
Datasets

Algorithm Lasso penalty parameter (λ) Algorithm Lasso penalty parameter (λ)

mDNA RNA miRNA Protein mDNA RNA miRNA Protein

CESC

iCluster

0.95928338 0.35667752 0.04723127 0.05048859

iCluster2

0.32736156 0.81596091 0.33713355 0.22638436
LGG 0.52280130 0.02442996 0.09283387 0.96579804 0.70846905 0.82247557 0.61074918 0.71824104
OV 0.93322475 0.26221498 0.07980456 0.41856677 0.34690553 0.63680781 0.81270358 0.20032573

BRCA 0.33387622 0.08957654 0.82899022 0.88436482 0.82573289 0.74755700 0.46416938 0.56188925

joint subspace of a multimodal data set, where k
is the number of clusters in the data set. For both
iCluster and iCluster2, clustering is performed in
the (k − 1) dimensional joint subspace extracted by
the corresponding algorithms. Therefore, the dimen-
sion of low-rank subspaces extracted by iCluster
and iCluster2 algorithms for CESC, LGG, OV, and
BRCA data sets are 2, 2, 3, and 3, respectively. For
each modality, the iCluster and iCluster2 algorithms
have a lasso penalty parameter (λ), which is tuned
using proportion of deviance (POD) statistic [15]
and reproducibility index (RI) [19], [16], respectively.
For iCluster, the POD statistic lies between 0 and 1.
Small values of POD indicate strong cluster separa-
bility, and large values of POD indicate poor cluster
separability. On the other hand, for iCluster2, RI is
computed by repeatedly partitioning the samples
into a learning and a test set and then evaluating
the degree of agreement between the predicted and
the fitted cluster assignment using adjusted Rand
index. Values of RI close to 1 indicate perfect cluster
reproducibility and values of RI close to 0 indicate
poor cluster reproducibility. The penalty parameter
(λ) for each modality ranges between 0 and 1, with
0 representing the null model where no features are
selected and 1 representing the full model where all
features are included. The uniform sampling design
(UD) approach of Fang and Wang [20] is used to
generate different combination of λ values that are
scattered uniformly across the search domain. The
optimal value λ parameter for iCluster and iCluster2
algorithms is given in Table 3 for different data sets.

• PCA-con [17]: In this approach the performance of
k-means clustering on the k largest principal com-
ponents of the integrated data is studied, where the
integrated data is obtained by naively concatenating
features from all the available modalities.

• BCC [10]: This is a consensus clustering based

approach which uses Dirichlet mixture model to
separately cluster the individual modalities. Then
a Bayesian framework is used for simultaneous
estimation of both the consensus clustering and the
source-specific clusterings. The number of clusters
is set to k overall and the algorithm is executed
for 10,000 iterations. The adherence parameter α
is given Beta(1,1) prior distribution and is fitted
separately for each modality. The Dirichlet prior
concentration parameter β0 has a default value of 1
which often yielded less than k clusters. Therefore,
the Dirichlet prior concentration parameter β0 is
varied between 1 to 10, where higher value of β0
favors larger number of clusters and more equal
proportions for each cluster. The optimal value of
β0 is selected using an estimated adherence statistic
α∗, as proposed by the authors.

• MDI [11]: This is a Bayesian method for integrative
modeling of multimodal datasets. Each modality is
modeled using a Dirichlet-multinomial allocation
mixture model, and the dependencies between these
models is captured pairwise agreement between
their clusterings. The Matlab implementation of the
MDI algorithm available from https://warwick.
ac.uk/fac/sci/systemsbiology/research/software/
has been used with its default parameter settings
in this work. The MDI algorithm allows different
modalities to be modeled by different distributions.
The count based RNA and miRNA modalities
of CESC, LGG, and BRCA data sets are not
log transformed and are modeled using Poisson
distribution, while array based mDNA and Protein
modalities are modalities are modeled using
Gaussian distribution. For the OV data set, all
the four modalities contain array based real-
valued data, so they are modeled using Gaussian
distribution. The maximum number of clusters that
may appear in the data set was set to half the

https://warwick.ac.uk/fac/sci/systemsbiology/research/software/
https://warwick.ac.uk/fac/sci/systemsbiology/research/software/
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number of samples in the dataset, as recommended
by the authors. Given these parameter settings,
MDI automatically estimates the number of clusters
in the data set. However, the number of clusters
estimated by MDI ranges between 8 to 13 on the
four TOGA data sets, which is much larger than
the actual number of clusters in those data sets.

• Clusternomics [12]: This is a probabilistic clustering
method which identifies groups of samples that
share global behavior across heterogeneous modal-
ities. The algorithm models clusters on the level of
individual modalities, while also extracting global
structure that arises from the local cluster assign-
ments. Clusters on both the local and the global level
are modeled using a hierarchical Dirichlet mixture
model to identify structure on both levels. All the
four modalties of each data set are modeled using
the default multivariate Normal distribution with
diagonal covariance matrix. The number of local
clusters in each modality, as well as the number
of global clusters is set to k, the actual number of
clusters in the data set.

The Bayesian approaches like BCC, MDI, and clus-
ternomics algorithms use Markov chain Monte Carlo
(MCMC) simulations to obtain the consensus/global
clusters. For these approaches, the MCMC algorithm is
executed for 1,000 iterations and different MCMC sim-
ulations can result in different solutions. Therefore, for
BCC, MDI, and clusternomics, the average performance
over 10 different executions is reported here.

4 CLUSTER EVALUATION MEASURES

In this work, the clustering performance of the in-
dividual modalities, the existing integrative clustering
approaches, and the proposed algorithm is evaluated
using five external cluster evaluation indices, namely, F-
measure [21], Rand index [22], Jaccard coefficient [23],
Dice coefficient [23], and purity [24]. These external
cluster validity indices compare the identified clusters
with the clinically established subtypes of each cancer
data set. The indices are described as follows:

Let T = {t1, . . . , ti, . . . , tkT } be the true partition of
n samples of a data set into kT clusters. Let C =
{c1, . . . , cj , . . . , ckC} be the kC clusters returned by a
clustering algorithm. The external evaluation indices
measure how close is the clustering C with respect to
true partition T . The external evaluation indices used in
this work are defined next.

1) Set-matching indices: These indices are based on
matching entire clusters, where similar clusters are
first found either by pairing or matching, and their
similarity is then measured using set matching
methods. Two set-matching based indices consid-
ered in this work are as follows:

a) F-measure [21]: The F-measure of a cluster
ci with respect to a class tj assess how well
cluster cluster ci describes class tj and is given

by the harmonic mean of precision and recall.

Precision Pij =
|ci ∩ tj |
|ci|

. (1)

Recall Rij =
|ci ∩ tj |
|tj |

. (2)

F(tj , ci) =
2PijRij

Pij +Rij
(3)

=
2|ci ∩ tj |
|ci|+ |tj |

. (4)

The overall F-measure is given by the
weighted average of the maximum F-measure
over the clusters in C.

F−measure =
1

n

kT∑
j=1

|tj | max
i
{F(tj , ci)}. (5)

b) Purity [24]: It measures the extent to which
each cluster contains samples primarily from
one class. Each cluster is first assigned with
the true class which is most frequent in the
cluster and then the purity of the clustering
solution is assessed by the proportion of cor-
rectly assigned samples. Formally it is given
by,

Purity =
1

n

kC∑
i=1

max
j
{|ci ∩ tj |}. (6)

In general, higher the value of purity, better is
the cluster solution. However, purity does not
penalize large number of clusters.

2) Pair-counting indices: Pair-counting measures
count the pairs of points on which the two
clusterings agree or disagree. In a n sample data
set, the

(
n
2

)
pairs of points can be divided into

four categories. Let a represent the number of
pairs that are in the same cluster both in C and
T , b represent the number of pairs that are in the
same cluster in C but in different clusters in T , c
represents the number of pairs that are in different
clusters in C but in the same cluster in T , and d
represent the number of pairs that are in different
clusters both in C and T .The values a and d count
the agreements while b and c the disagreements.
Three pair-counting based indices are considered
in this work are as follows:

a) Rand [22]: It is defined as the ratio of the total
number of agreements to the total number of
pairs, given by

Rand =
a+ d

a+ b+ c+ d
(7)

b) Jaccard [23]: The Jaccard similarity coefficient
is defined as

Jaccard =
a

a+ b+ c
(8)
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c) Srensen-Dice coefficient [23]: This index is de-
fined as

Dice =
2a

2a+ b+ c
(9)

All the external cluster validation indices lie in [0,1] and
a higher value indicates better clustering.

Inorder to evaluate the robustness of clusters identi-
fied by the proposed approach, the Davies-Bouldin index
[25] is used. It is an internal cluster validity index which
evaluates the quality of clustering based on the infor-
mation intrinsic to data like compactness and separation
of the identified clusters. The information of the correct
partition of the data is not used during internal cluster
evaluation. Let X = {x1, ..., xi, ..., xn} be the set of n
samples, where xi ∈ Rk represents the i-th sample in
a k-dimensional subspace. Let the Euclidean distance
between samples xi and xj be denoted as de(xi, xj).
The k clusters are represented as C = C1, ..., Ck, and
the centroids of each of k clusters are v1, ..., vk. Let the

centroid of the dataset be given by x̄ = 1
n

n∑
i=1

xi. The

Davies-Bouldin index estimates the compactness based
on the distance from the samples in a cluster to its
centroid and separation based on the distance between
centroids. It is defined as

DB =
1

k

∑
Cj∈C

max
Cl∈C\Cj

{
S(Cj) + S(Cl)

de(vj , vl)

}
, (10)

where S(Cj) =
1

|Cj |
∑

xi∈Cj

de(xi, vj). (11)
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